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A Contour-Based Approach to the Multimode
Network Representation of Waveguide

Transitions
Werner L. Schroeder,Member, IEEE, and Marco Guglielmi

Abstract—A flexible and efficient numerical method is pre-
sented by which the multimode network representation (MMNR)
of the abrupt transition between a standard waveguide and a
waveguide of arbitrary cross section can be established without
reference to the cross-sectional fields. The approach combines
the boundary integral-equation method (BIEM) with contour
integral expressions for the coupling coefficients, and a novel
highly efficient scheme to express modal normalization constants
in terms of coupling coefficients and eigenvalues. Application
is demonstrated for a variety of multiridge circular waveguide
(MRCW) configurations and transitions between MRCW and
circular waveguide (CW). Comparison is made against most
published results for this problem.

Index Terms—Boundary integral equations, circular wave-
guides, dualdualdual-modemodemode waveguide filters, mode-matching methods,
waveguide discontinuities.

I. INTRODUCTION

T HE multimode network representation (MMNR) is well
established as a rigorous approach to the analysis of

cascaded waveguides of different cross sections [1]. By de-
composing the problem, such as to leave the EMF analysis
part (determination of cutoff frequencies and modal coupling
coefficients) frequency independent and only a relatively sim-
ple multimode transmission-line network analysis frequency
dependent, it is also very efficient, while identical to the mode-
matching technique with respect to the field representation.

The application of the MMNR to standard waveguides with
analytically known modal fields is straightforward. However,
in the general case, it is often a numerical challenge. One
aspect is the large number of modes which is required to
obtain sufficient accuracy. Another aspect is the sensitivity of
the computed overall frequency response of typical waveguide
components to small variations of the cross-sectional geometry
and, hence, to inexact representations of the latter. Finally, for
design purposes, analysis is to be repeated with different ge-
ometrical parameters in an optimization loop. Since variation
of geometrical parameters implies different discretizations, it
is mandatory to assure a uniform convergence behavior, in
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Fig. 1. Perspective view on the cross section
 of a nonstandard waveguide
with contour@
 and moving tripod of unit vectors(n, t, a) wheret = d

ds
p

and n = t � a.

particular, in the presence of TM-mode field singularities about
reentrant corners.

An application for which these difficulties are all but trivial
is the MMNR of the abrupt transition between a circular wave-
guide (CW) and a multiridge circular waveguide (MRCW)
(see Fig. 1), which has recently found widespread interest
in connection with efforts to design CW dual-mode filters
without tuning screws. The replacement of tuning screws
by an exactly premachined section of MRCW was proposed
in [2]. Although alternative design concepts for dual-mode
filters which avoid nonstandard waveguide cross sections have
recently been presented [3], [4], the analysis of CW-MRCW
transitions is taken as a test case for the present method.

Among the methods which have previously been used in
this context are the finite-element method (FEM) [2]–[5], the
radial method of lines [6], and the radial mode-matching
method [7]–[9]. The latter are restricted to waveguide cross
sections which conform to the coordinate lines of a cylindrical
coordinate system, which allows for separation of variables.
The FEM allows for approximate description of arbitrary cross
sections. However, it may be counted as a disadvantage that
the numerically most efficient contour integral expressions for
the coupling coefficients [10] cannot be applied without loss
of accuracy. The reason is that the FEM yields a weak solution
for the domain, but has an ultimately unspecified local error
along the (nonsmooth) contour. However, minimization of the
error with respect to contour values is an inherent property
of contour integral approaches. Such an approach was used in
[11] to compute the first few TE modes of ridged waveguides
with two symmetry planes. However, analysis of TM modes,
which introduces the additional problem of field singularities,
and evaluation of coupling coefficients were not considered.

Another approach [12] starts from an approximation of
a Green’s function for a similar standard waveguide cross
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section to arrive at an algebraic eigenvalue problem. This
feature makes the approach numerically effective, particularly
if only a moderate number of modes is desired. However,
for a large number of modes, accurate approximation of the
Green’s function becomes more difficult, and uniqueness of
the solution may also present a problem [13].

This paper is based on the boundary integral-equation
method (BIEM) which has previously been applied to TM-,
TE-, and hybrid-mode analysis of a variety of guided wave
structures, including media with finite conductivity [14]–[16].
Unique features of this method are its capability to represent
an arbitrarily curved waveguide contour without resorting
to staircase or polygonal approximations, and the simplic-
ity by which field singularities can be accounted for with
asymptotically exact expansions functions. Both features are
of specific importance within an optimization loop to assure
uniform accuracy over all geometrical parameters which may
be encountered.

II. M ODAL ANALYSIS

To define the notation which is to be used in subsequent
derivations, the representation of TM and TE modes in hollow
waveguides is briefly summarized. Single primed symbols
refer to TM modes; double primed symbols to TE modes.
Expressions which hold in identical form for TM- and TE-
mode quantities are written only once with the primes omitted.

A. Representations of Modal Fields

TM and TE modes will be described in terms of axially
orientedHertzian potentials and . denotes the axial
unit vector (see Fig. 1). The functions solve

(1)

with eigenvalues for Dirichlet boundary conditions and
eigenvalues for Neumann boundary condition. The orthog-
onality relations between the solutions of (1) will be used in
the form

(2)

(3)

for (4)

The normalized transverse modal fields will be denoted by

(5)

and

(6)

The modal decomposition of the full 3-D electromagnetic
field is the starting point of the MMNR. However, it should
be noted that the description of TM and TE modes in terms of
Hertzian potentials or transverse fields is still highly redundant.
All information about a mode which can be written as a
linear functional of the transverse fields can equivalently be
written as a linear functional of its boundary values only. It

Fig. 2. Trace functionv0

1
of the first TM mode for the MRCW shown in

the inset (arbitrary units).

is, therefore, possible to go one step beyond the reduction
from three-dimensional (3-D) to two-dimensional (2-D) fields
and formulate the problem exclusively in terms of simple one-
dimensional (1-D) functions. To this end, we introduce as a
generalization of the boundary values of a Hertzian potential,
its traceswith respect to some closed contour . Let

(7)

denote the parameterization ofin terms of arc length
. Further, let denote the interval with the exception of

the (finite) number of singular points where the tangent along
is discontinuous. The normal vector alongmay then be

defined as

(8)

With these definitions, we introduce thetraces of with
respect to as

(9)

and

(10)

The traces coincide with the boundary values of the Hertzian
potential and those of its normal derivative, respectively,
if is identified with waveguide contour . It is then
obvious that each mode is completely described by eigenvalue
and trace. An illustration of this representation is given in
Fig. 2. Attractive features of the purely 1-D representation are
the exact parametric representation of an arbitrarily curved
waveguide contour, the small number of expansion functions,
and the simplicity by which edge terms with the asymptotically
exact singular behavior can be included.

B. Trace-Function Eigenvalue Problem

To exploit these advantages, one has to reformulate the
eigenvalue problem (1) for the Hertz potentials as an eigen-
value problem for the trace functions. By application of
Green’s second identity to and a suitably chosen fundamen-
tal solution of (1), we arrive at a homogeneous contour integral
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TABLE I
GEOMETRICAL PARAMETERS OF MRCW CONFIGURATIONSA–J . FOR MEANING OF SYMBOLS, SEE TEXT AND FIG. 3

equation for the trace functions. Since we are interested in
arbitrary waveguide cross sections, we choose the free-space
Green’s function

(11)

where denotes the modified Bessel function of the second
kind and zeroth order and . Splitting

into its singular part, and the
remaining regular part , the trace-function eigenvalue
problems take the form [14]

(12)

for the TM modes and

(13)

for TE modes. In both equations, it is understood thatmaps
on . The kernels

(14)

and

(15)

are the (source point) normal derivatives of and . The
operators and are to be approximated by finite
dimensional-matrix operators upon selection of a suitable
expansion of the trace functions. With view on numerical
integration, we have, therefore, decomposed the contour in-
tegrals appearing in (12) and (13) into contributions due to
the singular and regular part of the fundamental solution. This
decomposition and the particular form of the first term in (13)
are mandatory to assure uniform convergence of the integrals
on the right-hand side of (13) if both and approach a
singular point. A more detailed discussion of this problem
can be found in [14]. In (12), the decomposition is still
advantageous from a numerical point of view because only
the first integral is (weakly) singular, but on the other hand,

Fig. 3. Definition of geometrical parameters for MRCW configurationsA–G
of Table I. The figure applies as is to configurationC and also shows the
partition of the contour.

independent from the transverse wavenumberand, hence,
to be evaluated only once for a given waveguide contour.

Discretization of the operators and is accom-
plished by expanding the traces into second-order-splines,
for augmented by edge terms with a singularity of order

about a reentrant corner of angle. Fig. 3
shows a typical nonequidistant partition of the waveguide
contour. A regular -spline extends over three elements of the
partition. Numerical integration is performed on an element by
element basis using an adaptive iteration scheme. A nonlinear
substitution first removes the singularities of the fundamental
solution and the expansion functions. A modified Romberg
scheme is then applied to evaluate the integral up to the
specified relative error. The advantage of this procedure over
fixed-order integration rules is the decoupling of integration
error and spatial resolution. In connection with the parametric
representation of the waveguide contour, it lends to an auto-
matic refinement of the geometrical approximation until the
specified relative integration error (typically 10) is met.

The residuals of the operator equations are tested using
the method of least squares with intermediate projection, an
approach which assures the absence of spurious solutions
[17]. The method uses two weighting functions per expansion
function. The resultant nonsquare matrix operator is subject
to singular-value decomposition to locate the eigenvalues as
minima of the residual. Like all other numerical approaches
which end up in a search procedure for eigenvalues, the
present approach is (at this point) faced with the problem to
reliably detect arbitrarily close eigenvalues. This problem has
been solved by a novel multiple eigenvalue search algorithm



414 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 4, APRIL 1998

(MESA). It is based on simultaneous consideration of several
singular vectors as possible candidate solutions, making use of
the fact that the solution vectors for degenerate eigenvalues are
orthogonal. Degenerate solutions can, therefore, be identified
as near zeros of the residuals (i.e., the singular values) of
two or more singular vectors. It can be shown that the
singular vectors corresponding to two closely neighbored
eigenvalues—though not strictly orthogonal—are still almost
orthogonal. Because of the analytic dependence of the Green’s
function on transverse wavenumber, it is in fact possible to
write the inner product between the singular vectors which
correspond to two closely neighbored eigenvalues as a power
series in eigenvalue separation. This property makes it possible
to establish a correlation between subsequent samples of
singular values by comparing inner products between the
corresponding solution vectors. The sets of singular values
obtained at different sampling points can thus be interpreted
as sampling values of a set ofcontinuousresidual functions,
each bound to one of a set of continuously evolving candi-
date solutions which are locally mutually orthogonal. This
approach puts the detection of closely spaced eigenvalues
on the same footage as that of degenerate eigenvalues. The
method was found to allow for reliable detection of hundreds
of eigenvalues without anya priori information on their
separation. In addition, it results in a dramatic increase of
numerical efficiency because the sampling step width is no
longer bounded by eigenvalue separation, but only by the
width of the minima of the residual functions. The number
of initial sampling steps is thereby typically reduced to the
number of eigenvalues to be detected. The approach may
equally well be applied within other numerical methods for
electromagnetic-field eigenvalue problems which amount to
the solution of a nonlinear, as opposed to algebraic eigenvalue
problem. A detailed derivation of the MESA in a more
general context and a description of its implementation will
be presented in a separate paper.

III. COUPLING COEFFICIENTS

This section derives expressions for the coupling coeffi-
cients between TM and TE modes of two waveguides of
different cross sections in terms of traces and eigenvalues.
Following a brief summary of the relevant definitions, we shall
consider the case where one of the waveguides is a standard
waveguide with separable cross section, chosen such that
the arbitrary cross section is contained in the closure of

. The general case of two arbitrary cross sectionsand
just lends to a simple and obvious algebraic expression

in terms of the coupling matrices derived for the
and transitions. Below, superscripts and will
be placed on quantities which relate to cross sectionand

, respectively.

A. Definition of Coupling Coefficients

Observing that the sets of transverse modal fields

(16)

(17)

are orthonormal bases of and , re-
spectively, the continuity conditions for the total transverse
fields

(18)

in the common interface plane of both waveguides lends to
the infinite system of equations

(19)

(20)

denotes the symmetric inner product with respect to.
The domain of definition of has tacitly been extended
to with on to simplify the notation.
Substitution of (18) and exploitation of the orthogonality
relations (2)–(4) yields (after restriction to finite numbers of
modes) the well-known matrix equations

(21)

and

(22)

where the and denote the vectors of modal voltages and
currents. are thecoupling matriceswith elements

(23)

corresponding to the th TM mode in and the th TM
mode in as follows:

(24)

corresponding to the th TM mode in and the th TE
mode in and

(25)

corresponding to the th TE mode in and the th TE
mode in .

B. Coupling Coefficient in Terms of Traces

Expressions for the coupling coefficients in terms of contour
integrals have previously been given [10]. A more concise
argument is given below for the readers convenience. Noting
that the expressions

(26)

and

(27)
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are identities for any two functions which solve (1) in
some region with eigenvalues and , respectively, we
obtain by combination of (26) and (27)

(28)

Subsequent application of the divergence theorem lends to

(29)

where and , are the traces of with respect
to , as defined by (9) and (10). denotes the
symmetric inner product with respect to the interval, the
domain of definition of the parameterization of.

A second identity is obtained by applying the divergence
theorem to

(30)

With the same definition of symbols as above, the result is

(31)

The desired expressions for the coupling coefficients in
terms of the traces are now immediately obtained by applying
(29) to the right-hand sides of (23) and (25), and likewise, (30)
to the right-hand side of (24) upon identification of with

. Since and are both identically zero, the result
simplifies to

(32)

(33)

and

(34)

The inner products in the above expressions can be evaluated
with little numerical effort. Subsections of which are
contained in do not make a contribution. Considering, for
instance, a CW and a ridged waveguide, as shown in Fig. 1,
the domain of integration reduces to the small subintervals of

, which map on the ridge boundaries. Moreover, since
and are assumed to be known analytically, while and

[obtained by solving (12) and (13)] are represented by
coefficient vectors with respect to fixed expansion functions
on , numerical integrations are to be performed just once for
each mode in and each expansion function.

C. Mode Normalization

Expressions (32)–(34) still contain the so far unknown
normalization constants and for the nonstandard
waveguide. Because the norm of a mode is a quadratic func-
tional of the field, it is not possible to obtain the normalization
constants in terms of single contour integrals over the traces, a

fact which hitherto seemed to make the BIEM unattractive for
the present application. Below, we present a novel approach
to express the normalization constants in terms of eigenvalues
and coupling coefficients for the nonnormalized modes at
negligible extra numerical expense.

To derive the required expressions, recall that is an
orthonormal basis of and that . By
definition of the coupling coefficients, we may, therefore,
expand the transverse fields of the nonstandard waveguide in
the form

(35)

and

(36)

The above expansions define continuations of the fields
and onto with zero values on . It is possible,
therefore, to express the norm of the transverse modal fields
in the nonstandard waveguide in terms of the right-hand sides
of (35) and (36).

The expansion (36) of the TE modes is considered first.
The coupling coefficients appearing in (36) are the generalized
Fourier coefficients of the continuation of onto with
respect to the orthonormal system . Since the continuation
of onto is bounded, and furthermore continuous almost
everywhere on , it follows that the coefficients are square-
summable, and by exploitation of the orthonormality of the
modes in either waveguide we obtain Parseval’s formula in
the form

(37)

This equation applies to the properly normalized coupling
coefficients as defined by (32)–(34). If only the coupling
coefficients and , evaluated for
nonnormalized modes in are available, the above relation
obviously provides a quadrature formula. Restricting to finite
numbers of TM and TE modes in , it reads

(38)

The evaluation of the norms of TM-mode fields in re-
quires some additional consideration. Because the continuation
of the TM-mode fields of the nonstandard waveguide onto

is, in general, not bounded, it is not possible to interchange
the order of integration and summation on the right-hand side
of the expression

(39)

The sequence of partial sums has, in fact,
no limit. The problem can be solved by considering the norm
of the Hertzian potential instead. Generally, the norm of a
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(a)

(b)

Fig. 4. Variation of (a) the first 19 TM-mode and (b) the first 30 TE-mode
eigenvalues of configurationA with the length of the vertical tuning ridges.
Symbols refer to results given in [2].

transverse modal field of either type in a hollow waveguide
and the norm of the Hertzian potential from which it has
been derived are related via

(40)

as a simple application of Green’s first identity if the normal-
ization defined by (2)–(6) is adopted.

Considering (5), (35), and the boundary conditions for the
TM-mode Hertzian potentials in , it is easily verified
that the latter have the series expansion

(41)

which, as opposed to (35), is uniformly convergent on
because the continuation of onto with zero values on

is continuous everywhere.
Since is an orthogonal set in it

follows from (41) that

(42)

TABLE II
COMPARISON OF EIGENVALUES FOR CONFIGURATION A

AGAINST RESULTS PRESENTED IN [2] FOR dv = 0:8

Fig. 5. Variation of the first 20 TE-mode eigenvalues of configurationB

with the penetration of one pair of tuning ridges.

The combination of (40) and (42) lends to

(43)

which is the desired normalization condition for the coupling
coefficients. As before, a quadrature formula is obtained if the
coupling coefficients , computed for normalized
modes in , but nonnormalized modes in , are substituted.
Restricting to a finite number of modes in , the result
is

(44)

It may be noted that the quadrature formulas (38) and (44)
yield the desired normalization constants at almost no extra
numerical expense. The error of the finite sum approximations
in these formulas is just the error incurred by expanding a
mode in into a finite subset of the modes in . The former
is easily estimated by comparing the sequences of partial sums
against the limiting value of a simple exponential fitting func-
tion. A relative error termination criterion for the summations
in (38) and (44) is, therefore, also suitable to determine the
number of modes which should be retained in.

IV. NUMERICAL RESULTS

Application of the method is illustrated below for analysis
of several MRCW configurations and CW-MRCW transitions.
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(a)

(b)

(c)

Fig. 6. (a) Trace functionv0

10 and (b)u00

32 for the 10th TM and the 32nd TE
mode of MRCW configurationC. (c) Trace functionv0

1 (axial surface current
density) for the first TM mode of configurationD with dh = 0:80.

Their parameters are listed in Table I. The ridges are centered
about the positions along the unit circle. Theconfigu-
ration codein Table I specifies the occupied positions by a “1”
as the th binary digit. are the normalized distances
between the origin and the tips of the horizontal (vertical,
coupling) ridges, are the normalized widths of the
ridges measured at their tips, as shown for configuration
in Fig. 3. In view of the limited amount of reference results
which are currently available, and moreover because accuracy
checks against analytically tractable examples are (due to the
absence of reentrant corners and field singularities) inherently
too optimistic, we include numerical tables for comparison
against most previously tabulated results.

Configuration was first considered in [2]. It contains a pair
of horizontal and a pair of vertical tuning ridges. Fig. 4(a) and
(b) shows the dependence of TM- and TE-mode eigenvalues
on the penetration of the horizontal pair of tuning ridges.
Comparison against tabulated eigenvalues in [2, Fig. 2, Th.
I and II] is made in Table II. The agreement is moderate, but
the accuracy of the reference is also unspecified. A similar

TABLE III
COMPARISON OF EIGENVALUES FOR CONFIGURATION

D AGAINST RESULTS PRESENTED IN [2]

(a)

(b)

Fig. 7. Scattering parameters with respect to the CWTE11(0) mode of
0:275�r long section of (a) MRCW configurationE (rectangular ridges) and
(b) MRCW configurationF (conical ridges). Symbols (measurements) and
dashed lines (radial mode-matching method) are reproduced from [9, Fig. 3]
and identical in both figures.

investigation of parameter dependence of the first few TE-
mode eigenvalues of configurations was first presented
in [11]. Fig. 5 gives results for a larger number of modes.
Since the reference does not contain numerical values, only
qualitative agreement can be confirmed.

Configuration is another example for which eigenvalues
have been previously tabulated in [2, Fig. 2, Th. I and II].
Comparison is made in Table III. As to agreement of re-
sults, the same comment applies as to configuration. The
contour discretization for this example is shown in Fig. 3.
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TABLE IV
MRCW-MODE EIGENVALUES AND CW-MRCW-MODE COUPLING COEFFICIENTS FORCONFIGURATION G. FIGURES IN ITALICS ARE ABSOLUTE DIFFERENCES

WITH RESPECT TORESULTS PRESENTED IN [12, Th. II]. THE THIRD CW-MODE INDEX IN COLUMN ONE IS DEFINED BY  m;n;i � cos(m�� i
�

2
)

For illustration, the TM and TE boundary-value functions
and , which may be identified with the axial and

transverse tangential surface current density, respectively, are
shown in Fig. 6(a) and (b) for two modes. It is obvious
from Fig. 6(a) that the occurrence of the TM-mode field
singularities may lend to a substantial increase in the number
of CW modes required for the MMNR of the CW–MRCW
transition. The singularities may further give rise to increased
losses, and thereby deteriorate the accuracy of the perfect
electric conductor (PEC) approximation. Singularities can be
avoided by use of a smooth ridge shape. Fig. 6(c) illustrates
the versatility of the present method in this respect. It shows
the function of MRCW configuration which contains
circular ridges.

MRCW configurations and F of Table I have previously
been considered in [9]. Both contain two very thin vertical
ridges with a penetration of half the CW radius and differ
only by the shape of the ridges. Configuration contains
rectangular ridges while contains conical ridges. Measured
scattering parameters with respect to the CW mode of
a 0.275 radius long section of configuration are reported
in [9, Fig. 3]. However, as a consequence of the restrictions
of the radial mode-matching method, configurationwas
adopted as an approximation for analysis in [9]. Comparison
between both configurations is made in Fig. 7. The agreement
between the numerical results [Fig. 7(b)] is very good. For
the present calculation, 50 TM and 50 TE modes in MRCW
and 200 each in CW were considered. The reference retained
40 modes, each in either waveguide, which explains small
differences in Fig. 7(b). Comparison between Fig. 7(a) and

(b) reveals the strong sensitivity of results with respect to
geometrical parameters. Additional calculations have shown
that a variation of ridge length by only0.001radius shifts
the 3-dB crossover frequency by more than 4 GHz. The
discrepancy between the results is, therefore, probably due to
mechanical inaccuracy, as pointed out in [9]. It is obvious that
not only is technological reproducibility a challenge, but also
that any systematic deviation from the nominal geometry like
finite curvature of corners must be accounted for in analyses
of this kind.

Configuration refers to an example recently presented
in [12]. This configuration contains one horizontal and one
vertical tuning ridge and a single coupling ridge in between.
It is the only example for which numerical values of coupling
coefficients have been published for a few modes. Com-
parison against these results is made in Table IV, adopting
the sign conventions of the reference. The maximum abso-
lute difference of 0.0077 occurs for the to

coupling coefficient. The rms of the absolute
differences for all 21 coefficients is 6.510 .

V. CONCLUSION

A completely contour-based approach to the evaluation of
coupling coefficients for abrupt transitions between a standard
waveguide and a waveguide of arbitrary cross section has been
presented. Numerical results for MRCW and its transition to
CW have been compared to most publicly available data for
low-order modes. Excellent agreement with the more recently
published result by other methods was found.
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