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A Contour-Based Approach to the Multimode
Network Representation of Waveguide
Transitions

Werner L. Schroedemylember, IEEE and Marco Guglielmi

Abstract—A flexible and efficient numerical method is pre- a
sented by which the multimode network representation (MMNR)
of the abrupt transition between a standard waveguide and a
waveguide of arbitrary cross section can be established without
reference to the cross-sectional fields. The approach combines
the boundary integral-equation method (BIEM) with contour
integral expressions for the coupling coefficients, and a novel
highly efficient scheme to express modal normalization constants
in terms of coupling coefficients and eigenvalues. Application
is demonstrated for a variety of multiridge circular waveguide
(MRCW) configurations and transitions between MRCW and
circular waveguide (CW). Comparison is made against most
published results for this problem.
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Fig. 1. Perspective view on the cross sectidnf a nonstandard waveguide
with contourd$? and moving tripod of unit vectorén, t, a) wheret = %p
andn = t X a.

Index Terms—Boundary integral equations, circular wave-
guides, dual-mode waveguide filters, mode-matching methods,
waveguide discontinuities.

particular, in the presence of TM-mode field singularities about
reentrant corners.

An application for which these difficulties are all but trivial
is the MMNR of the abrupt transition between a circular wave-
guide (CW) and a multiridge circular waveguide (MRCW)
(see Fig. 1), which has recently found widespread interest

I. INTRODUCTION

HE multimode network representation (MMNR) is well X ) i .
established as a rigorous approach to the analysis iggconnection with efforts to design CW dual-mode filters

cascaded waveguides of different cross sections [1]. By diithout tuning screws. The replacement of tuning screws
composing the problem, such as to leave the EMF analyg’l)é an exactly premachined section of MRCW was proposed

part (determination of cutoff frequencies and modal couplil [2]- Although alternative design concepts for dual-mode
coefficients) frequency independent and only a relatively si lters which avoid nonstandard waveguide cross sections have

ple multimode transmission-line network analysis frequendgcently been presented [3], [4], the analysis of CW-MRCW

dependent, it is also very efficient, while identical to the mod&ansitions is taken as a test case for the present method.
matching technique with respect to the field representation. AMong the methods which have previously been used in
The application of the MMNR to standard waveguides witiS context are the finite-element method (FEM) [2]-{5], the
analytically known modal fields is straightforward. Howeverr,adlal method of lines [6], and th.e radial mode-matchlng
in the general case, it is often a numerical challenge. OR¥thod [71-[9]. The latter are restricted to waveguide cross
aspect is the large number of modes which is required §gctions which conform to the coordinate lines of a cylindrical
obtain sufficient accuracy. Another aspect is the sensitivity §pordinate system, which allows for separation of variables.
the computed overall frequency response of typical waveguid8€ FEM allows for gpproxn;ate descgpnon odf. ark()jltrary crosi
components to small variations of the cross-sectional geome?ﬁft'ons' However, It may be counte. as a aisa vanFage that
and, hence, to inexact representations of the latter. Finally, {9F numerically most efficient contour integral expressions for
design purposes, analysis is to be repeated with different Ja€ coupling coefficients [10] cannot be applied without loss
ometrical parameters in an optimization loop. Since variatigt] 2ccuracy. The reason is that the FEM yields a weak solution
of geometrical parameters implies different discretizations, [§f the domain, but has an ultimately unspecified local error

is mandatory to assure a uniform convergence behavior, gpng the (nonsmooth) contour. Howeyer, m!n|m|zat|on of the
error with respect to contour values is an inherent property

of contour integral approaches. Such an approach was used in
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and evaluation of coupling coefficients were not considered.
Another approach [12] starts from an approximation of
a Green’s function for a similar standard waveguide cross
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section to arrive at an algebraic eigenvalue problem. This
feature makes the approach numerically effective, particularly
if only a moderate number of modes is desired. However, I s
for a large number of modes, accurate approximation of the I

Green's function becomes more difficult, and uniqueness of
the solution may also present a problem [13].

This paper is based on the boundary integral-equation
method (BIEM) which has previously been applied to TM-,
TE-, and hybrid-mode analysis of a variety of guided wave
structures, including media with finite conductivity [14]-[16].
Unique features of this method are its capability to represent
an arbitrarily curved waveguide contour without resorting . .
to staircase or polygonal approximations, and the simplic- 0 2 4 6 8
ity by which field singularities can be accounted for with arclength s —»
asympt(')t.icglly exact eXp,an,Sions fun.cti.ons'. Both features %8 2. Trace functionw} of the first TM mode for the MRCW shown in
of specific importance within an optimization loop to assur@e inset (arbitrary units).
uniform accuracy over all geometrical parameters which may
be encountered.

trace function v,’

is, therefore, possible to go one step beyond the reduction

from three-dimensional (3-D) to two-dimensional (2-D) fields

and formulate the problem exclusively in terms of simple one-
To define the notation which is to be used in subsequatitnensional (1-D) functions. To this end, we introduce as a

derivations, the representation of TM and TE modes in hollogeneralization of the boundary values of a Hertzian potential,

waveguides is briefly summarized. Single primed symboaits traceswith respect to some closed contdiirc . Let

refer to TM modes; double primed symbols to TE modes.

Expressions which hold in identical form for TM- and TE- p:l—T, s P(s) )

mode quantities are written only once with the primes omittegenote the parameterizationdfn terms of arc lengtls € I C
R. Further, let/ denote the interval with the exception of
A. Representations of Modal Fields the (finite) number of singular points where the tangent along
TM and TE modes will be described in terms of axially' iS discontinuous. The normal vector alohgmay then be
orientedHertzian potentialsyy’, anday?’. a denotes the axial defined as
unit vector (see Fig. 1). The functions, : 2 — R solve

II. MODAL ANALYSIS

. 3]
1 — R? —a x —p(s). 8
n:l — R, s —a X asp(s) (8)
With these definitions, we introduce theaces of ,, with
with eigenvaluesh], for Dirichlet boundary conditions and respect tol' as
eigenvalued: for Neumann boundary condition. The orthog-

Adpy + h2 =0 (1)

onality relations between the solutions of (1) will be used in un I — R, s — ¥n(p(s)) )
the form and
2 .
(Vi Vi )a = () 6um 2) vy 1 I — R, s — nVp,(p(s)). (10)
7 7 o 11\ 2
(Vi Ve = (2) onm 3 The traces coincide with the boundary values of the Hertzian
(Vi ax Vi) =0,  form,neN. (4) potential and those of its normal derivative, respectively,

if I" is identified with waveguide contoudf. It is then
obvious that each mode is completely described by eigenvalue
and trace. An illustration of this representation is given in

The normalized transverse modal fields will be denoted by
1
/ _

—— ! o /
€n = P Vi by i=axe, ®) Fig. 2. Attractive features of the purely 1-D representation are
d the exact parametric representation of an arbitrarily curved
an waveguide contour, the small number of expansion functions,
n = TVW e =h" xa. (6) and the_S|mpI|C|ty by vyh|ch edge Ferms with the asymptotically
P exact singular behavior can be included.

The modal decomposition of the full 3-D electromagnetic ) )
field is the starting point of the MMNR. However, it should®: Trace-Function Eigenvalue Problem
be noted that the description of TM and TE modes in terms of To exploit these advantages, one has to reformulate the
Hertzian potentials or transverse fields is still highly redundarigenvalue problem (1) for the Hertz potentials as an eigen-
All information about a mode which can be written as &alue problem for the trace functions. By application of
linear functional of the transverse fields can equivalently &reen’s second identity #,, and a suitably chosen fundamen-
written as a linear functional of its boundary values only. Kkal solution of (1), we arrive at a homogeneous contour integral
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TABLE |
GEOMETRICAL PARAMETERS OF MRCW CONFIGURATIONS A—J. FOR MEANING OF SymBoLS, SeE TEXT AND FiG. 3
config. code | ridge shape | dn ] by [ dy I by [ de | be | Ref.
A 01010101 rectangular | parameter | 0.2610524 dy, 0.2610524 - - [2]
B 01010101 rectangular | parameter 0.12 dyn 0.12 - - [11]
C 01010111 rectangular 0.8 0.2610524 0.8 0.2610524 | 0.0872388 | parameter | [2]
D 01010111 circular parameter - 0.7 - 0.9 - -
E 10001000 rectangular - - 0.500 0.03125 - - 9]
F 10001000 conical - - parameter | 0.0348995 - - 9]
G 00000111 rectangular | 0.8633334 | 0.1666667 0.85 0.1666667 | 0.7733334 | 0.1666667 | [12]
equation for the trace functions. Since we are interested in 2
arbitrary waveguide cross sections, we choose the free-space
Green’s function 3 1
gr I x I\diag I x I — C, (t,s) — Ko(jh|r(t, )| 4 be
(11) g @
i . 4 T 0
where K, denotes the modified Bessel function of the second h
kind and zeroth order and(t,s) := p(t) — p(s). Splitting
g(t, s) into its singular partgo(t, s) := — In(||r(¢, s)||) and the 1
remaining regular parj(¢,s), the trace-function eigenvalue
problems take the form [14] 5 by 7
/ / ~ ’ 6
Gu[v]®) = [  golt,s)v'(s)ds+ [ guw(ts)v'(s)ds - . o
nN{t} nN{t} Fig. 3. Definition of geometrical parameters for MRCW configuratidr€s
-0 (12) of Table I. The figure applies as is to configuratiGhand also shows the

partition of the contour.

for the TM modes and )
independent from the transverse wavenumigerand, hence,

Ky, [u”](t) := / (W"(s) = u" () ko(t, s) ds to bg evalluat.ed only once for a given Wavegui(je contour.
Mt} Discretization of the operator&;, and K;» is accom-
AT plished by expanding the traces into second-omesplines,
+ /I“ (s)kn (t, 5) ds for +/ augmented by edge terms with a singularity of order
=0 (13) 7= g -1> % about a reentrant corner of angle Fig. 3

shows a typical nonequidistant partition of the waveguide
for TE modes. In both equations, it is understood thataps contour. A regulaB-spline extends over three elements of the

onI' = 9. The kernels partition. Numerical integration is performed on an element by
r(t, s)n(s) eleme_nt _basi_s using an adaptiv_e iterat_i(_)n scheme. A nonlinear

ko(t,s) := == (14) substitution first removes the singularities of the fundamental

[[x(t, )]l solution and the expansion functions. A modified Romberg

and scheme is then applied to evaluate the integral up to the

specified relative error. The advantage of this procedure over
/~€h(t, s) := (JRK L (jR||r(t, s)|) — Dko(t,s) (15) fixed-order integration rules is the decoupling of integration

error and spatial resolution. In connection with the parametric
are the (source point) normal derivatives ®f and g;,. The representation of the waveguide contour, it lends to an auto-
operatorsG;, and Kj» are to be approximated by finitematic refinement of the geometrical approximation until the
dimensional-matrix operators upon selection of a suitabdpecified relative integration error (typically 10 is met.
expansion of the trace functions. With view on numerical The residuals of the operator equations are tested using
integration, we have, therefore, decomposed the contour the method of least squares with intermediate projectian
tegrals appearing in (12) and (13) into contributions due @pproach which assures the absence of spurious solutions
the singular and regular part of the fundamental solution. THik7]. The method uses two weighting functions per expansion
decomposition and the particular form of the first term in (13unction. The resultant nonsquare matrix operator is subject
are mandatory to assure uniform convergence of the integradssingular-value decomposition to locate the eigenvalues as
on the right-hand side of (13) if botk and ¢ approach a minima of the residual. Like all other numerical approaches
singular point. A more detailed discussion of this problemhich end up in a search procedure for eigenvalues, the
can be found in [14]. In (12), the decomposition is stilpresent approach is (at this point) faced with the problem to
advantageous from a numerical point of view because oniliably detect arbitrarily close eigenvalues. This problem has
the first integral is (weakly) singular, but on the other handbeen solved by a novel multiple eigenvalue search algorithm
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(MESA). It is based on simultaneous consideration of severe orthonormal bases df»(Q°,R?) and Ly(Qf,R?), re-
singular vectors as possible candidate solutions, making usespéctively, the continuity conditions for the total transverse
the fact that the solution vectors for degenerate eigenvalues tetls
orthogonal. Degenerate solutions can, therefore, be identified E S, %y
as near zeros of the residuals (i.e., the singular values) of <H“V> = Z <I’mh’m> + Z <I§}h,’}> (18)
two or more singular vectors. It can be shown that the v m=1 N M n=1 N TR

singular vectors corresponding to two closely neighborgd the common interface plane of both waveguides lends to
eigenvalues—though not strictly orthogonal—are still almogte infinite system of equations

orthogonal. Because of the analytic dependence of the Green’s

function on transverse wavenumber, it is in fact possible to (&, EG, —Ef)go =0 Vee&” (19)
write the inner product between the singular vectors which (h, HO - HL, o =0 Vhe HL. (20)

correspond to two closely neighbored eigenvalues as a power
series in eigenvalue separation. This property makes it possible)s denotes the symmetric inner product with respec®to
to establish a correlation between subsequent samplesTbe domain of definition ofE{, has tacitly been extended
singular values by comparing inner products between tke Q° with Ef,, = 0 on Q9\Q! to simplify the notation.
corresponding solution vectors. The sets of singular valuggbstitution of (18) and exploitation of the orthogonality
obtained at different sampling points can thus be interpretgglations (2)—(4) yields (after restriction to finite numbers of

as sampling values of a set obntinuousresidual functions, modes) the well-known matrix equations

each bound to one of a set of continuously evolving candi- VO S o LAVALL

date solutions which are locally mutually orthogonal. This <Vo//> = <0 c ) <VI”> (21)
approach puts the detection of closely spaced eigenvalues

on the same footage as that of degenerate eigenvalues. Ihe

method was found to allow for reliable detection of hundreds ol 0 10! 1

of eigenvalues without anya priori information on their <C”’T C”T) <IO”> = <II”) (22)

separation. In addition, it results in a dramatic increase of
numerical efficiency because the sampling step width is Mdiere theV andI denote the vectors of modal voltages and
longer bounded by eigenvalue separation, but only by tRgrrents.C’, C”, C" are thecoupling matricesvith elements
width of the minima of the residual functions. The number o I 1 o 7
of initial sampling steps is thereby typically reduced to thenn = (emen >QI = POIPLI // Vip - Vb dd - (23)
number of eigenvalues to be detected. The approach may Qf
equally well b? "’?pp"e‘?' within other numerlcal_ methods fo(Eorresponding to thenth TM mode inQ® and thenth TM
electromagnetic-field eigenvalue problems which amount AT i

. . . ode in}* as follows:
the solution of a nonlinear, as opposed to algebraic eigenvalue 1
problem. A detailed derivation of the MESA in a more/” — (e¥ el) = W// (ax Vy&) - Vil dQ
general context and a description of its implementation will m e
be presented in a separate paper. (24)

Ill. COUPLING COEFFICIENTS corresponding to thenth TM mode inQ© and thenth TE

. . . . . mode inQ! and
This section derives expressions for the coupling coefﬁr—]

cients between TM and TE modes of two waveguides of ¢/ — <eg”,efl”>m = %// VO NVt a0
different cross sections in terms of traces and eigenvalues. PR Py, )

Following a brief summary of the relevant definitions, we shall ¢ (25)
consider the case where one of the waveguides is a standard

waveguide with separable cross sectiel, chosen such that corresponding to thenth TE mode inQ° and thenth TE
the arbitrary cross sectioft! is contained in the closure of mode in Q.

Q©. The general case of two arbitrary cross sectifiisand

Q! just lends to a simple and obvious algebraic expressi@n Coupling Coefficient in Terms of Traces

in terms of the coupling matrices derived for t¥’ — Q7
and Q¢ — Q7 transitions. Below, superscripts and / will
be placed on quantities which relate to cross secfiféhand
Qf, respectively.

Expressions for the coupling coefficients in terms of contour
integrals have previously been given [10]. A more concise
argument is given below for the readers convenience. Noting
that the expressions
A. Definition of Coupling Coefficients V(p1Ver + ¢2Vir) = 2V - Voo — (hi + h3)p1ea

Observing that the sets of transverse modal fields (26)

E9:={el :meN}u{ed :neN} (16) and
H' = {hl :meN}u{h) :neN} a7 V(p1Vps — 02Vep1) = (h] — h3) o192 27
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are identities for any two functiong,, ¢» which solve (1) in fact which hitherto seemed to make the BIEM unattractive for
some regiort) with eigenvaluesh; and h,, respectively, we the present application. Below, we present a novel approach

obtain by combination of (26) and (27) to express the normalization constants in terms of eigenvalues
12 12 and coupling coefficients for the nonnormalized modes at
V1-Vipy = v(ﬁwlvw + WQ}LQ%V%) (28) negligible extra numerical expense. _
L 2 2 L To derive the required expressions, recall tig&t is an

Subsequent application of the divergence theorem lends toorthonormal basis ofL,(Q2°,R?) and thatQ! c Q°. By

B2 12 definition of the coupling coefficients, we may, therefore,
(Vor, Vga)g = 5 [u1, vl + 5275 lv1,us]r  (29) expand the transverse fields of the nonstandard waveguide in
hi—hy hy = hi the form
wherew,; andw;, ¢ € {1,2} are the traces op; with respect b=, o
to I' = 99, as defined by (9) and (10}:,-]; denotes the e, = chnej (35)
symmetric inner product with respect to the intendalthe j=1
domain of definition of the parameterization bf and
A second identity is obtained by applying the divergence 00 00
theorem to el = Z c%ejol + Z e, (36)
V- (Vez x a) = V(p1(Ves x a)). (30) = =

The above expansions define continuations of the fiefds
andel” onto Q¢ with zero values o2°\Q!. It is possible,

Ous therefore, to express the norm of the transverse modal fields
(Vior, Vpz x ajg = [“1’ g} ; (31) " in the nonstandard waveguide in terms of the right-hand sides
) ) ) o of (35) and (36).

The desired expressmns_for th_e coupllng coefﬂClents_ln The expansion (36) of the TE modes is considered first.
terms of the traces are now immediately obtained by applyifge coupling coefficients appearing in (36) are the generalized
(29) to the right-hand sides of (23) and (25), and likewise, (3@, rier coefficients of the continuation ef” onto Q° with
to the right-hand side of (24) upon identification Gfwith  yegpect 1o the orthonormal systeifl. Since the continuation
Q. Sinceu;’ and v;” are both identically zero, the resulty el onto Q€ is bounded, and furthermore continuous almost

With the same definition of symbols as above, the result is

simplifies to everywhere om2©, it follows that the coefficients are square-
1 (ho’)2 summable, and by exploitation of the orthonormality of the
Clrn = O BT 5 3 [uol vl],, (32) modes in either waveguide we obtain Parseval's formula in
mon (h,?l’) - (hn/) the form
1 d oo o>
Mmoo _ 0 I
Cmn = P,‘,?’Prf” |:dSU/maU/n :|[I (33) <e£//’erIL//>QI _ Z(c;{;t)Q + Z (C;/n)Q -1 (37)
Jj=1 i=1
and This equation applies to the properly normalized coupling
0% coefficients as defined by (32)—(34). If only the coupling
po_ 1 (h) [wQ" ul"],,.  (34) Ccoefficientsc, = Pl andé), = Pl"¢},, evaluated for

Cmn = Dow pln 2 2 . 4 . .
PRUER" (hin)™ — (R nonnormalized modes ift! are available, the above relation

The inner products in the above expressions can be evalua?géi"ous'y provides a quadrature formula. Restricting to finite

O O H [0
with little numerical effort. Subsections a#$2! which are numbers ofA/™* TM and M™" TE modes inQ2™, it reads

contained inP® do not make a contribution. Considering, for ) M ) Mo )
instance, a CW and a ridged waveguide, as shown in Fig. 1, (P = Z (&) + Z (&))" (38)
the domain of integration reduces to the small subintervals of j=1 i=1

I', which map on the ridge boundaries. Moreover, sinf}¢

andv?’ are assumed to be known analytically, whil and . " . . . .
I [glbtained by solving (12) and (13)] are represented 1§ uires some additional consideration. Because the continuation
Un y g P f the TM-mode fields!’ of the nonstandard waveguide onto

coefficient vectors with respect to fixed expansion functions, is, in general, not bounded, it is not possible to interchange

on/, numerlpal()lntegratlons are to l_)e perfor_med Just once f9r1re order of integration and summation on the right-hand side
each mode iff2}“ and each expansion function. )
of the expression

'S} 'S}
Ir 1t _ } : el
<en ' €n >QI - Cin®i

i=1 j=1

The evaluation of the norms of TM-mode fields §H re-

C. Mode Normalization e (39)
C. € .
Expressions (32)—(34) still contain the so far unknown SR
normalization constants®!’ and PI” for the nonstandard ¢
waveguide. Because the norm of a mode is a quadratic fufidcte sequence of partial surﬁ@f‘zl(c’jn)Q,N € N has, in fact,
tional of the field, it is not possible to obtain the normalizationo limit. The problem can be solved by considering the norm

constants in terms of single contour integrals over the tracesfahe Hertzian potentiab!’ instead. Generally, the norm of a
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10 TABLE I
COMPARISON OF EIGENVALUES FOR CONFIGURATION A
AGAINST RESULTS PRESENTED IN[2] FORd, = 0.8

8 BIEM [2] BIEM 2]
T™M; | 2.65177 | 2.64350 TE; | 1.82936 | 1.82790
@ TM; | 4.17470 | 4.16310 TE; | 1.82936 | 1.82790
E 6} TM; | 4.17470 | 4.16310 TE3 | 2.65501 | 2.66790
g ° TMy | 5.22026 | 5.21290 TE4 | 3.38548 | 3.35770
g;n T™M; | 5.87925 | 5.87220 TEs | 3.86856 | 3.87200
5 4 TMs | 5.96038 | 5.94440 TEs | 4.01011 | 4.00320
z TM7 | 6.72523 | 6.71160 TE7 | 4.01011 | 4.00320
TMg | 6.72523 | 6.71160 TEg | 4.50831 | 4.51290
2
0.700 0.750 0.800 0.850 0.900 8.0
parameter d, — ’
@ l[ 6.5}
10 m
o
>
8 )
af
I o 35}
@ e =
g 6 & //
= 20¢
&>
o
5 - ———
) . .
® 4 0.50 0.60 0.70 0.80 0.90 1.00
= ) parameter dy = d, —
2r & 4 & =8 Fig. 5. Variation of the first 20 TE-mode eigenvalues of configurati®n
. with the penetration of one pair of tuning ridges.
0.700 0.750 0.800 0.850 0.900
parameter d, The combination of (40) and (42) lends to
(b) ~ [0 \?
Fig. 4. Variation of (a) the first 19 TM-mode and (b) the first 30 TE-mode (hI’)Q Z J -1 (43)
eigenvalues of configuratioA with the length of the vertical tuning ridges. n : ho’
Symbols refer to results given in [2]. g=1 \J

which is the desired normalization condition for the coupling
transverse modal field, of either type in a hollow waveguide coefficients. As before, a quadrature formula is obtained if the
coupling coefficients’,,, := Pl'¢. computed for normalized

and the norm of the Hertzian potenti@), from which it has s n “jns :
been derived are related via modes ir2°, but nonnormalized modes &/, are substituted.

Restricting to a finite number af/©’ modes inQ®, the result
Pr%<en7 en> = h,%(i/)n, z/}n> (40) is

as a simple application of Green'’s first identity if the normal- N2 In2 ! & 2
ization defined by (2)—(6) is adopted. (B~ ()" 22 | 700 (44)
Considering (5), (35), and the boundary conditions for the =1 !

TM-mode Hertzian potentialg’l’ in Q, it is easily verified It may be noted that the quadrature formulas (38) and (44)

that the latter have the series expansion ield the desired normalization constants at almost no extra
p Yl
. 0o . numerical expense. The error of the finite sum approximations
— ol = e ¢ (41) in the;e fo.rmulas. is just the error incurred by expanding a
Pl Jz::l mport mode inQ’ into a finite subset of the modes§f’. The former

_ is easily estimated by comparing the sequences of partial sums
which, as opposed to (35), is uniformly convergent@f  against the limiting value of a simple exponential fitting func-
because the continuation gf/’ onto 2 with zero values on tjon. A relative error termination criterion for the summations
Q2\Q! is continuous everywhere. in (38) and (44) is, therefore, also suitable to determine the

Since {¢{” : j € N} is an orthogonal set itLo(27,R) it number of modes which should be retainedf.
follows from (41) that

IV. NUMERICAL RESULTS

2 o0 / 2
1 .
<_PI’> (WG = <PJQ,> (WS 95" q0- (42)  Application of the method is illustrated below for analysis
" J of several MRCW configurations and CW-MRCW transitions.

=1
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TABLE 1l
! ! i j COMPARISON OF EIGENVALUES FOR CONFIGURATION
‘ ' | D AGAINST RESULTS PRESENTED IN [2]

TE; TE,
d | BEM 2] | BEM 2]
0.75 | 1.80096 1.79431 | 1.88592 1.84835
! 0.80 | 1.81160 1.80042 | 1.86271 1.84519
o 0.85 | 1.81980 1.80652 | 1.84622 1.84169
4 N . 0.90 | 1.82517 1.81813 | 1.83279 1.83787
D L 0.95 | 182762 1.82301 | 1.82821 1.83633

(@) 0
&=
i
=)
=
h74
')
o
E
(b) -8 : - ' :
26.0 27.0 28.0 29.0 GHz 31.0
frequency —
‘ | @
4 | s 0
| ! ;
S11
| I
)
0
(©) )
Fig. 6. (a) Trace functiom;, and (b)«}, for the 10th TM and the 32nd TE w
mode of MRCW configuratiod. (c) Trace function| (axial surface current &8 S12
density) for the first TM mode of configuratioR® with d;, = 0.80. g
Their parameters are listed in Table I. The ridges are centered
about then x 45° positions along the unit circle. Thmnfigu- 260 270 280 200  GHz 310
ration codein Table | specifies the occupied positions by a “1” frequency ——
as thenth binary digit.d;, (d.,, d..) are the normalized distances (b)

betwe_en the origin and the tips of the _hor'zor_]tal (Vert'cail—"ig. 7. Scattering parameters with respect to the QW) mode of
coupling) ridgespy, (b,,b.) are the normalized widths of theo.275 x r long section of (a) MRCW configuratioR (rectangular ridges) and
fidges measured at their tips, as shown for configuratn B (R ROl o0, e Oy are reproduced from [9. Fa. 3
in Fig. 3. In view of the limited amount of reference resultgnd identical in both figures. d P » 9.
which are currently available, and moreover because accuracy
checks against analytically tractable examples are (due to the
absence of reentrant corners and field singularities) inhereritlyestigation of parameter dependence of the first few TE-
too optimistic, we include numerical tables for comparisomode eigenvalues of configuration8 was first presented
against most previously tabulated results. in [11]. Fig. 5 gives results for a larger number of modes.
Configuration4 was first considered in [2]. It contains a pailSince the reference does not contain numerical values, only
of horizontal and a pair of vertical tuning ridges. Fig. 4(a) angualitative agreement can be confirmed.
(b) shows the dependence of TM- and TE-mode eigenvaluesConfigurationC' is another example for which eigenvalues
on the penetration of the horizontal pair of tuning ridgehave been previously tabulated in [2, Fig. 2, Th. | and 1.
Comparison against tabulated eigenvalues in [2, Fig. 2, TBomparison is made in Table Ill. As to agreement of re-
I and Il] is made in Table Il. The agreement is moderate, batilts, the same comment applies as to configuratiorThe

the accuracy of the reference is also unspecified. A simileontour discretization for this example is shown in Fig. 3.
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TABLE IV
MRCW-MobE EIGENVALUES AND CW-MRCW-MobE CoupPLING COEFFICIENTS FORCONFIGURATION GG. FIGURES IN ITALICS ARE ABSOLUTE DIFFERENCES
WITH ReESPECT TORESULTS PRESENTED IN[12, Th. Il]. THE THIRD CW-MODE INDEX IN COLUMN ONE IS DEFINED BY ©y i ~ cos(ma — i5)
T™-TM 2.50844 3.90773 4.07273 5.33798 5.78153 6.53081 6.64260 7.15565 7.39397
0,1,0 —0.95003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
—0.00137
1,1,0 0.11758 —0.70235 —0.62935 —0.04051 0.06112 0.01257 0.01161 —0.01228 —0.02961
1,1,1 0.12198 0.67418  —0.65543 0.04109 0.06356 —0.01436 0.01039 0.01169 —0.03107
2,1,0 —0.00306 0.12665 —0.00861 —0.93701 —0.01099 0.08621 0.00337 —0.06219 0.00360
2,1,1 0.07033 0.00385 0.19447  —-0.01610 0.25071 —0.00270 0.08153 -—-0.00162 —0.06677
0,2,0 0.09184 0.00058 0.18942 —0.01044 0.85829 —0.00401 0.02233 —0.00084 —0.10826
TM-TE 1.80241 1.87144 2.96832 2.99081 3.79716 3.86141 4.19312 4.90266 5.33038
0,1,0 0.07592  —0.00005 0.06384 0.00768 -0.01644 —0.00023 0.00316 —0.00454 —0.00019
-~0.00279 0.00000 —0.00142 —0.00069
1,1,0 0.06327 —0.02132 0.06879  —0.03559 —0.03581 0.00006 —0.03267 0.00996 0.00689
1,1,1 0.06600 0.02063 0.06068 0.04879 —0.03063 —0.00070 0.03776 0.00699 —0.00737
2,1,0 —0.00253  —0.04028 0.00781 —0.08081 —0.00488 0.00064 —0.06728 0.00277 0.01288
2,11 0.06102 —0.00141 0.10249 0.00673 —0.10785 —0.00077 0.00206 0.05706 —0.00050
0,2,0 0.06517  —0.00005 0.05069 0.00632 —0.00652 —0.00015 0.00256 —0.00864 —0.00010
TE-TE 1.80241 1.87144 2.96832 2.99081 3.79716 3.86141 4.19312 4.90266 5.33038
1,1,0 —0.69744  —0.68470 0.05173 0.03085 —0.02706 0.00918 0.03013 0.01186 —0.00498
—0.00170 —0.0007, —0.00158 —0.00253
1,1,1 0.67037 —0.71240 —0.05618 0.01897 0.03184 0.00987 0.02622 —0.01477 —0.00460
0.00140 —0.00101 0.00287 —0.00132
2,1,0 -0.00269  —0.00065 —-0.91551 —-0.07295 -0.27205 —0.00226 0.00260 0.11631 —0.00064
0.00035 —0.00002 —0.00732 0.007713
21,1 —0.00064 0.01171 0.07570  —0.95185 0.01318 0.02118 0.09589 —0.00499 —0.02036
0.00003 0.00080 —0.00458 —0.00393
0,1,0 0.00015 0.02141 —0.00340 0.03062 —0.00668 0.99405 0.02045 —0.00095 0.00362
3,1,0 0.00224 0.00036 —0.06120 0.00625 0.57103 —0.00730 0.65803 0.34640 0.02443

For illustration, the TM and TE boundary-value functiongb) reveals the strong sensitivity of results with respect to
v'(s) andw’(s), which may be identified with the axial andgeometrical parameters. Additional calculations have shown
transverse tangential surface current density, respectively, trat a variation of ridge length by only0.004radius shifts
shown in Fig. 6(a) and (b) for two modes. It is obvioushe 3-dB crossover frequency by more than 4 GHz. The
from Fig. 6(a) that the occurrence of the TM-mode fieldiscrepancy between the results is, therefore, probably due to
singularities may lend to a substantial increase in the numbmeechanical inaccuracy, as pointed out in [9]. It is obvious that
of CW modes required for the MMNR of the CW-MRCWnot only is technological reproducibility a challenge, but also
transition. The singularities may further give rise to increasdldat any systematic deviation from the nominal geometry like
losses, and thereby deteriorate the accuracy of the perféieite curvature of corners must be accounted for in analyses
electric conductor (PEC) approximation. Singularities can leg this kind.
avoided by use of a smooth ridge shape. Fig. 6(c) illustratesConfiguration G refers to an example recently presented
the versatility of the present method in this respect. It shows [12]. This configuration contains one horizontal and one
the functionv] of MRCW configurationD which contains vertical tuning ridge and a single coupling ridge in between.
circular ridges. It is the only example for which numerical values of coupling
MRCW configurationsE and F of Table | have previously coefficients have been published for a few modes. Com-
been considered in [9]. Both contain two very thin verticgbarison against these results is made in Table IV, adopting
ridges with a penetration of half the CW radius and diffethe sign conventions of the reference. The maximum abso-
only by the shape of the ridges. Configuratiéh contains lute difference of 0.0077 occurs for th €W — TE,; () to
rectangular ridges whilé' contains conical ridges. MeasuredMRCW — TE4 coupling coefficient. The rms of the absolute
scattering parameters with respect to the TW/ ;o mode of differences for all 21 coefficients is 6.510~%.
a 0.275xradius long section of configuratioli are reported
in [9, Fig. 3]. However, as a consequence of the restrictions
of the radial mode-matching method, configuratibhwas
adopted as an approximation for analysis in [9]. ComparisonA completely contour-based approach to the evaluation of
between both configurations is made in Fig. 7. The agreemenupling coefficients for abrupt transitions between a standard
between the numerical results [Fig. 7(b)] is very good. Favaveguide and a waveguide of arbitrary cross section has been
the present calculation, 50 TM and 50 TE modes in MRC\f#resented. Numerical results for MRCW and its transition to
and 200 each in CW were considered. The reference retair@d/ have been compared to most publicly available data for
40 modes, each in either waveguide, which explains smbdiv-order modes. Excellent agreement with the more recently
differences in Fig. 7(b). Comparison between Fig. 7(a) amaiblished result by other methods was found.

V. CONCLUSION
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